Adapted by Nelson Nuñez-Rodriguez
Conditions of Use:
Unless otherwise noted, this work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Chapters derived from:
By David W. Ball
Attribution-NonCommercial-ShareAlike
CC BY-NC-SA
Click on the printer icon at the bottom of the screen
Make sure that your printout includes all content from the page. If it doesn't, try opening this guide in a different browser and printing from there (sometimes Internet Explorer works better, sometimes Chrome, sometimes Firefox, etc.).
If the above process produces printouts with errors or overlapping text or images, try this method:
Click here to return to Chapter 10
QUESTION | ANSWER |
1. Explain why we need to consider a van’t Hoff factor for ionic solutes but not for molecular solutes. |
1. Ionic solutes separate into more than one particle when they dissolve, whereas molecular solutes do not. |
3. Calculate the boiling point of an aqueous solution of NaNO3 made by mixing 15.6 g of NaNO3 with 100.0 g of H2O. Assume an ideal van’t Hoff factor. |
3. 101.9°C |
5. What is the freezing point of a solution made by dissolving 345 g of CaCl2 in 1,550 g of H2O? Assume an ideal van’t Hoff factor. |
5. −7.5°C |
7. Seawater can be approximated as a 3.5% NaCl solution by mass; that is, 3.5 g of NaCl are combined with 96.5 g H2O. What is the osmotic pressure of seawater? Assume an ideal van’t Hoff factor. |
7. 30.3 atm |
9. What is the vapor pressure of an aqueous solution of 36.4 g of KBr in 199.5 g of H2O if the vapor pressure of H2O at the same temperature is 32.55 torr? What other solute(s) would give a solution with the same vapor pressure? Assume an ideal van’t Hoff factor. |
9. 30.86 torr; any two-ion salt should have the same effect. |
Library Info and Research Help | reflibrarian@hostos.cuny.edu (718) 518-4215
Loans or Fines | circ@hostos.cuny.edu (718) 518-4222
475 Grand Concourse (A Building), Room 308, Bronx, NY 10451